Contents

I	Introduction	1
	1.1 Problem Definition and Objectives of This Work	1
	1.2 Course of Investigation	
2	Credit Risk Measurement in the Context of Basel II	5
_	2.1 Banking Supervision and Basel II	
	2.2 Measures of Risk in Credit Portfolios	
	2.2.1 Risk Parameters and Expected Loss	
	2.2.2 Value at Risk, Tail Conditional Expectation,	
	and Expected Shortfall	11
	2.2.3 Coherency of Risk Measures	
	2.2.4 Estimation and Statistical Errors of VaR and ES	22
	2.3 The Unconditional Probability of Default Within the Asset	
	Value Model of Merton	25
	2.4 The Conditional Probability of Default Within the One-Factor	
	Model of Vasicek	28
	2.5 Measuring Credit Risk in Homogeneous Portfolios	
	with the Vasicek Model	31
	2.6 Measuring Credit Risk in Heterogeneous Portfolios	
	with the ASRF Model of Gordy	35
	2.7 Measuring Credit Risk Within the IRB Approach	
	of Basel II	39
	2.8 Appendix	
•	Concentration Disk in Condit Doutfolies and Its Treatment	
3	Concentration Risk in Credit Portfolios and Its Treatment	
	Under Basel II	
	3.1 Types of Concentration Risk	
	3.2 Incurrence and Relevance of Concentration Risk	
	1 1 Measurement and Management of Concentration Risk	n/

x Contents

	3.4 Heuristic Approaches for the Measurement	
	of Concentration Risk	67
	3.5 Review of the Literature on Model-Based Approaches	
	of Concentration Risk Measurement	70
4	Model-Based Measurement of Name Concentration Risk	
	in Credit Portfolios	. 73
	4.1 Fundamentals and Research Questions on Name	
	Concentration Risk	. 73
	4.2 Measurement of Name Concentration Using the Risk	
	Measure Value at Risk	. 75
	4.2.1 Considering Name Concentration with the Granularity	
	Adjustment	75
	4.2.2 Numerical Analysis of the VaR-Based Granularity	
	Adjustment	87
	4.3 Measurement of Name Concentration Using the Risk Measure	
	Expected Shortfall	103
	4.3.1 Adjusting for Coherency by Parameterization	
	of the Confidence Level	103
	4.3.2 Considering Name Concentration with the Granularity	
	Adjustment	108
	4.3.3 Moment Matching Procedure for Stochastic LGDs	114
	4.3.4 Numerical Analysis of the ES-Based Granularity	101
	Adjustment	121
	4.4 Interim Result	134
	4.5 Appendix	136
5	Model-Based Measurement of Sector Concentration	
	Risk in Credit Portfolios	183
	5.1 Fundamentals and Research Questions on Sector	
	Concentration Risk	183
	5.2 Incorporation of Sector Concentrations Using Multi-Factor	
	Models	185
	5.2.1 Structure of Multi-Factor Models and Basel II-Consistent	
	Parameterization Through a Correlation Matching	
	Procedure	185
	5.2.2 Accounting for Sector Concentrations with the	
	Model of Pykhtin	190
	5.2.3 Accounting for Sector Concentrations with the	
	Model of Cespedes, Herrero, Kreinin and Rosen	197
	5.2.4 Accounting for Sector Concentrations with the	
	Model of Diillmann	202

Contents xi

	5.3 Performance of Multi-Factor Models	212
	5.3.1 Analysis for Deterministic Portfolios	212
	5.3.2 Simulation Study for Homogeneous and Heterogeneous	
	Portfolios	215
	5.4 Interim Result	219
	5.5 Appendix	220
6	Conclusion	237
Re	eferences	241

List of Figures

F1g. 2.1	Probability mass function of portfolio losses for an	
	exemplary portfolio	. 15
Fig. 2.2	Limiting loss distribution of Vasicek (1991)	. 34
Fig. 3.1	Types of concentration risk	. 58
Fig. 3.2	Accuracy of the Pillar 1 capital requirements considering	
	risk concentrations	. 66
Fig. 3.3	Lorenz curve for credit exposures	. 68
Fig. 4.1	Value at risk for a wide range of probabilities	. 88
Fig. 4.2	Value at risk for high confidence levels	. 89
Fig. 4.3	Granularity add-on for heterogeneous portfolios calculated	
	analytically with first-order (solid lines) and second-order	
	(dotted lines) adjustments as well as with Monte Carlo	
	simulations (+ and o) using three million trials	102
Fig. 4.4	Value at risk in the ASRF and the Vasicek model	104
Fig. 4.5	Different value at risk measures in the Vasicek model	106
Fig. 4.6	Expected shortfall in the ASRF and the Vasicek model	107
Fig. 4.7	Portfolio quality distributions	109
Fig. 4.8	Probability distribution of recovery rates for corporate bonds	
	and loans, 1970–2003	115
Fig. 4.9	Expected shortfall for a wide range of probabilities	122
Fig. 4.10	Expected shortfall for high confidence levels	122
Fig. 4.11	ES-based granularity add-on for heterogeneous portfolios	
	calculated analytically with first-order (solid lines) and	
	second-order (dotted lines) adjustments as well as with	
	Monte Carlo simulations (+ and o) using three million trials	133
Fig. 4.12	Relation between the shift of the probability and	
	the loss quantile	143

xiv	List of Figures

Fig. 5.1	Diversification Factor realizations on the basis	
	of 50,000 simulations	200
	Surface plot of the <i>DF</i> -function	
Fig. 5.3	Deviations of VaR^{Basel} and VaR^{mf} from ES^{mf}	218

List of Tables

Table 2.1	Loss distribution for an exemplary portfolio	4
Table 3.1	Guidance for institutions and supervisors considering	
	concentration risk 6	54
Table 4.1	Critical number of credits from that ASRF solution can be	
	stated to be sufficient for measuring the true VaR (see (4.49)) 9)2
Table 4.2	Critical number of credits from that the exact solution at	
	confidence level 0.995 exceeds the infinite fine granularity	
	at confidence level 0.999 (see (4.50)))3
Table 4.3	Critical number of credits from that the first order	
	adjustment can be stated to be sufficient for measuring	
	the true VaR (see (4.51))) 6
Table 4.4	Critical number of credits from that the first order adjustment	
	at confidence level 0.995 exceeds the infinite fine granularity	
	at confidence level 0.999 (see (4.52)))7
Table 4.5	Critical number of credits from that the first plus second	
	order adjustment can be stated to be sufficient for	
	measuring the true VaR (see (4.53)))9
Table 4.6	Critical number of credits from that the first plus second order	
	adjustment at confidence level 0.995 exceeds the infinite fine	
	granularity at confidence level 0.999 (see (4.54)))1
Table 4.7	Confidence level for the ES so that the ES is matched with	
	the VaR with confidence level 0.999 for portfolios of	
	different quality)8
Table 4.8	Recovery rates by seniority, 1970–2003	9
Table 4.9	Results of the normal distribution	20
	Results of the lognormal distribution	20
Table 4.11	Results of the logit-normal distribution	20
Table 4.12	Results of the beta distribution	20

xvi List of Tables

125
126
127
129
131
132
188
189
189
210
213
214
3
215
216
218